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SUMMARY

Compressible convection is an interesting ®eld for numerical experiments. Rapidly varying small-scale ¯ow
structures appear as the Rayleigh number Ra increases, demanding larger spatial resolution under more and more
severe Courant stability conditions. Coupling a pseudospectral approximation in space to a semi-implicit scheme
in time allows one to increase the size of Dt, though at each time step a system of algebraic equations, whose size
increases with the spatial resolution, must be solved by means of direct or iterative methods. The former allows
one to minimize the consumption of CPU time but leads to unacceptable demand of memory. The ef®ciency and
cost of the latter, on the other hand, depend heavily on the choice of the preconditioning operator and on the
allowed error tolerance. In this paper we check the capabilities of iterative-like methods and we achieve the main
goal of drastically reducing the memory storage with respect to direct methods, without increasing the CPU time.
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1. INTRODUCTION

Numerical simulation of compressible convection is a challenge of great physical and numerical

interest. The equilibrium ®eld stability in a viscous ¯uid depends essentially on the value of the

Rayleigh number Ra. For Ra smaller than a critical value Rac the viscous forces are able to react to

the buoyancy forces. In contrast, Ra > Rac, small perturbations will grow exponentially until non-

linear saturation occurs.1

Numerical simulations of realistic turbulent convective ¯ows must be able to span a wide range of

both length and time scales in order to take into account the great variety of physical phenomena

occurring in the ¯uid.2 When Ra is not too large, a steady state pattern with large-scale convective

cells is rapidly achieved. As Ra increases, small structures appear, leading to the need of high spatial

resolution and more severe numerical temporal stability constraint. A comparison among all the time

scales, due to diffusion, Dtdiff, sound wave propagation, Dtsw, and convective motions, Dtconv, gives
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an upper bound to the numerical time step Dtn of an explicit scheme:

Dtn < min�Dtsw;Dtdiff ;Dtconv�: �1�
Larger time steps are allowed when a semi-implicit scheme is used. In the case where the diffusion

and wave propagation terms are computed implicitly, the stability condition becomes

Dtn < Dtconv �2�
and a gain in computational time is obtained, as shown in Figures 1 and 2. Such a gain implies,

unfortunately, that a large system of equations must be solved at each time step and this operation, the

most time-consuming one in the code, has to be handled with care.

The direct LU method is able to produce a very accurate solution but is expensive in terms of the

number of operations. To reduce them, since in our application the matrices arising from the semi-

implicit scheme do not depend on time (see Section 4.3), the factorization step can be performed only

once at the beginning of the run and all the factorized matrices are stored. This approach minimizes

the consumption of CPU time but requires a lot of memory storage.

Figure 1. Ratio of maximum time step to CFL as a function of vertical resolution Nz

Figure 2. Ratio of maximum time step to fastest sound wave period as a function of vertical resolution Nz
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Iterative-like methods are an alternative appealing choice in order to minimize the need of

memory. In order to reduce the CPU time, it is convenient to stop the iterative solver as soon as the

accuracy reaches that of the other parts of the numerical code, which is why the analysis of all the

sources of truncation and round-off errors has been carried out in Section 4. Furthermore, the new

approximate preconditioning technique presented in the same section permits us to reduce

dramatically the total cost of the calculations, making this method as fast as the LU factorization

and much less memory-consuming.

2. EQUATIONS AND PHYSICAL PARAMETERS

We consider the compressible Navier±Stokes equations for a perfect gas in a gravitational ®eld,

@ ~m

@t
� ~m� �~H� ~v� ÿ 1

2
r~Hv2 ÿ ~Hp� r~g � ~Fvisc; �3�

@T

@t
� ÿ~v � ~HT ÿ 1

cv

T �~H � ~v� � 1

rRcv

~H � �w~HT � � 1

Cvr
F; �4�

@r
@t
� ÿ~H � �r~v�; �5�

p � RrT ; �6�
where ~m � r~v is the momentum. In equation (3),

~Fvisc � m H2~v� 1
3
~H�~H � ~v�

h i
� ~H�~v � ~Hm� � ~H� �~v� ~Hm� ÿ ~vH2m� 1

2
�~Hm��~H � ~v� �7�

is the viscous force, with m the dynamic viscosity coef®cient. In equation (4) for the temperature,

F � ÿv � ~Fvisc � ~H � fm�~H~v2 ÿ ~v� �~H� ~v� ÿ 2
3
~v � �~H � ~v��g

is the dissipation function responsible for viscous heating, w is the thermal conductivity, Cv and Cp

are the speci®c heats, cv � Cv=R and cp � Cp=R are the rescaled values and R is the gas constant. The

boundary conditions for the temperature are those of a thermally insulating wall. For the velocity we

consider rigid boundary conditions.

All the tests that we shall present concern convective ¯ows in a Cartesian geometry (a three-

dimensional in®nite horizontal layer, assuming periodicity in the two horizontal directions). The ¯uid

is heated from below. We assume that the thermal conductivity w and the dynamic viscosity

coef®cient m are constant, that there are no heat sources inside the layer and that the gravity is

vertical. We shall also assume a constant equilibrium density and a temperature gradient such that

compressional effects are not negligible (i.e. Mach number of the order of 0�5). We shall not consider

cases with shocks (Mach number larger than one), where spectral convergence is no longer

exponential and the pseudospectral method is not very effective. Finally, the Prandtl number

Pr � mCp=w will be taken equal to one.

The main parameter in our calculations is the Rayleigh number Ra0 at the middle of the layer,

which measures the importance of the destabilizing effect due to the buoyancy force compared with

the stabilizing effects of the viscous and heat diffusion:

Ra0 �
dS

dz

����
0

g0L4

wm
;

where z is the vertical co-ordinate, S is the entropy and L is the depth of the layer.
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3. NUMERICAL METHOD

We use a pseudospectral method without removing aliasing. We use kxmax
and kymax

Fourier modes in

the horizontal periodic directions and Nz � 1 Chebyshev polynomials in the vertical direction.

The semi-implicit scheme used3 allows us to relax the severe time step restrictions due to diffusive

and wave-like terms.

For the momentum equation the numerical scheme is

~mn�1 ÿ ~mn

dt
� 3

2
~Fn

AB ÿ 1
2
~Fnÿ1

AB � 1
2
~Fn�1

SI1 ÿ ~FSI1 � 1
2
~Fnÿ1

SI1 � ~Fn�1
SI2 ÿ ~Fn

SI2; �8�

where ~FAB represents the terms on the RHS of (3) that are treated using the Adams±

Bashforth scheme, ~FSI1 is the semi-implicit contribution for the viscous term and ~FSI2 is the semi-

implicit contribution for the wave-like terms:

~FAB � ~m� �~H� ~v� ÿ 1
2
r~Hv2 ÿ ~Hp� r~g � ~Fvisc;

~FSI1 � 1
2

m
r0

�H2 ~m� 1
3
~H�~H � ~m��;

~FSI2 � dt
gP

r

����
max

~H�~H � ~m�:

A term similar to FSI2 has been proposed by Harned and Schnack4 and has been tested by them in

plasma physics computations. It has proven to be effective also in convective ¯ows.3

The temperature equation is discretized as

Tn�1 ÿ Tn

dt
� 3

2
Gn

AB ÿ 1
2

Gnÿ1
AB � 1

2
Gn�1

SI1 ÿ Gn
SI1 �

1

2
Gnÿ1

SI1 ;

with

GAB � ÿ~v � ~HT ÿ 1

cv

T ~H � ~v� 1

rRcv

~H � �w~HT � � 1

Cvr
F;

GSI1 �
w
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����
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H2T :

Finally, for the density we use the Crank±Nicolson scheme

rn�1 ÿ rn � ÿ dt

2
~H � �rn�1~vn�1� ÿ dt

2
~H � �rn~vn�:

This equation is solved after the velocity equation, so that ~vn�1 is known. We solve this equation for

rn�1 using a simple Richardson iterative scheme

r0 � rn; ri�1 � rn ÿ dt

2
~H � �rn~vn� ÿ dt

2
~H � �ri~v

n�:

This scheme converges if the spectral radius of the linear operator L, such that Lr � 1
2
dt ~H � �r~vn�, is

less than one. This is true for dt suf®ciently small; we have veri®ed in all our computations that the

maximum time step allowed by the semi-implicit scheme is indeed below this limit value.

The semi-implicit scheme gives rise to a set of linear problems that have to be solved at each time

step. We shall give in Section 4.3 a description of the matrices involved and of the solution methods.
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4. ERROR ANALYSIS

The goal of this section is both to develop a complete analysis of all the error sources in the code and

to de®ne a stopping criterion for the iterative procedure.

There are three independent sources of errors in time-dependent computations: (i) the truncation

error, which comes from the fact that the solution at a given time is approximated with a ®nite

number of Fourier and Chebyshev modes, (ii) the temporal discretization error, which arises from the

discretization in time, and (iii) the round-off error, which is due to the fact that the calculations are

performed with ®nite precision. The main sources of round-off errors come from the computation of

pseudospectral derivatives and from the semi-implicit solver.

We analyse in the following these three sources of errors.

4.1. Spatial truncation error

The spatial absolute error has been measured by taking the absolute value of the z-component of

the velocity, jVz�n; kx; ky�j, and has been de®ned as

esa�Nz� � max
kx;ky

jVz�Nz; kx; ky�j;

where Nz labels the last Chebyshev coef®cient and kx and ky run over the Fourier mode numbers.

These values become smaller and smaller as the resolution increases, because the spectrum decays

exponentially near the viscous cut-off.

The relative truncation error is de®ned as

esr�n;Nz� �
esa�Nz�

maxkx;ky
jVz�n; kx; ky�j

and gives a measure of the relative precision of each mode. We have chosen this de®nition instead of

the more usual one

esr�n;Nz� � max
kx;ky

jVz�Nz; kx; ky�j
jVz�n; kx; ky�j

;

because the denominator jVz�n; kx; ky�j approaches zero for some n; kx and ky, giving an arti®cially

large relative error.

Large relative errors at small scales depend on the typical shape of the Chebyshev spectra, usually

showing an accumulation of energy localized in the region of large wave numbers.

4.2. Temporal discretization error

This source of error can be estimated quite accurately by making use of Taylor expansion in time.

The schemes used are Crank±Nicolson, Adams±Bashforth second-order and the two semi-implicit

schemes in equation (8). These schemes introduce errors after one time step that are

eS
i �n; kx; ky� � ÿCSdt3

d2f �ui�n; kx; ky��
dt2

� o dt4
d3f �ui�n; kx; ky��

dt3

 !
;

where the index S labels the scheme: CS � ÿ 5
12

for Adams±Bashforth second-order, CS � 1
12

for

Crank±Nicolson and CSI1 � CSI2 � 1
2

for both semi-implicit schemes of (8).

The total error ei�n; kx; ky� is thus a weighted average of the second temporal derivative of the terms

entering the RHS of the differential equation, multiplied by the cube of the time step. Generally, at

the largest wave numbers the oscillations have larger frequencies. In fact, the large-scale motions
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have typical time scales that are the turnover time of the large eddies, L=V (L is the size of the system

and V is the macroscopic velocity), the diffusion time of the large structures, L2=n, or the period of the

large-scale compressional effects, L=cs. On the other hand, small-scale amplitudes decrease with n

but are subject to very rapid changes in time due to their rapid turnover, l=v, to the rapid viscous

decay of their small structures, l2=n, or to the very rapid short period of sound waves, l=cs. It turns out

that the factor d2f �un�=dt2 is relatively less important at the larger scales than it is at the smaller

scales; in other words, the temporal discretization induces a smaller relative error on the larger scales.

Starting from the total error, we can de®ne the absolute temporal truncation error as

edta�n� � max
kx;ky

�edt�n; kx; ky��:

and the corresponding relative temporal truncation error as

edtr � max
kz;ky

edta�n�
jVz�n; kx; ky�j

:

If a purely explicit method were used, then one would be guaranteed that all the scales are well

resolved in time, because that is precisely the condition for an explicit scheme to be stable. When one

uses a semi-implicit scheme, one must be aware of the fact that some small-scale phenomena will not

be correctly described. Semi-implicit operators introduce additional numerical dispersion which

damps the high-frequency physical phenomena.4 In our case we have chosen to handle the sound

waves and the viscous operator implicitly. This means that the short sound waves and the small-scale

viscous effects are not resolved at all in time. An estimate of the error introduced in this

approximation is presented in the next section.

Finally we de®ne the global temporal truncation error as edta�Nz�. This number will be useful in the

following to de®ne the stopping criterion for the iterative solver.

4.3. Round-off error

The major contributions to the overall round-off error come from the computations of the

derivatives and from the inversion of the linear system that arises from the semi-implicit part.

The Chebyshev pseudospectral algorithm to compute the pth derivative consists of three steps.5

1. Start from the value of the functions at the Gauss±Lobatto nodes xi � cos�pj=N � and compute

the coef®cients a0
k of the Chebyshev expansion.

2. The coef®cients a
p
k of the Chebyshev expansion of the pth derivative are expressed in terms of

the coef®cients of the �pÿ 1�th derivative by the relation

�cka
p
k � a

p
k�2 � 2�k � 1�a pÿ1

k�1 ; �9�
with a

p
N ÿ p� k � 0 for k 5 1.

3. Reconstruct the value of the pth derivative at the Gauss±Lobatto nodes.

Steps 1 and 3 are achieved by making use of fast cosine transforms (FCTs). There are many

algorithms that can be used to compute an FCT that have different properties with respect to rounding

error. From numerical tests6 and theoretical analysis7 we derive that the `good' (in terms of rounding

error) algorithms produce an error in maximum norm that is uniformly distributed throughout the

whole Fourier spectrum and that behaves like ec log N ; c being a constant of order 10�7 and e0 the

machine precision.

The `bad' (in terms of rounding error) algorithms produce an additional ampli®cation by a factor N

of the rounding error produced during the FFT stage, thus bringing the total error of the FCT to
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ecN log N . It is worth noting that the `bad' algorithms are those generally used in the scienti®c

community because they are the fastest.

During step 2 of the computation of the derivatives the error produced during step 1 is ampli®ed,

because the derivative operator is ill-conditioned. The condition number of the matrix for the pth

derivative in spectral space scales like N 2p. The error is therefore ampli®ed by this factor.

A second source of rounding error comes from the solution of the linear system due to the semi-

implicit calculation. The matrix arising from the discretization of (8) using Fourier±Fourier±

Chebyshev decomposition is block diagonal, each block of complex linear equations arising from the

Chebyshev decomposition corresponding to a given couple kx; ky of Fourier wave numbers. The

following set of linear systems has to be solved at each time step:

A�kx; ky�x�kx; ky� � b�kx; ky�; kx � 0; . . . ; kxmax
; ky � 0; . . . ; kymax

;

where A�kx; ky� is a 6�Nz � 1� � 6�Nz � 1� matrix and b�kx; ky� and x�kx; ky� are vectors of dimension

6�Nz � 1�.
The corresponding round-off error depends on the choice of the solver. When direct methods are

used, the backward analysis provides an upper bound to the relative error8

esi
r �
kDxk1
kxk1

4
ok1

1ÿ ok2

; with o � max
i

jAxÿ bji
�jAkxj � jbj�i

; �10�

where

k1 �
kjAÿ1j�jAkxj � jbj�k1

kxk1
; k2 � kjAÿ1kAjk1: �11�

This analysis allows us to verify that the LU method produces unnecessarily accurate solutions.

The mean value of esi
r is actually o�10ÿ20�, much smaller than the other contributions to the global

error. This also allows us to assume the LU solution as the exact solution, so that for iterative methods

the residual error can be de®ned as

r�n; kx; ky� � x�n; kx; ky� ÿ xLU�n; kx; ky� �12�
and the absolute error as

esi
abs � max

kx;ky;n
jr�n; kx; ky�j: �13�

5. RESULTS

In order to set the optimal working parameters of the iterative solver and of the preconditioning

operator, we have started with 2D simulations, while 3D simulations have been performed later to

check the algorithm in more realistic con®gurations. We have taken as initial conditions a random

white noise in frequency space with a very small amplitude.

In the ®rst 2D stage we have compared the performances of iterative-like solvers with the direct

LU one for two values of Ra, namely Ra � 5Rac and 50Rac.

Our matrices are non-symmetric and ill-conditioned. Following Reference 9, we have tried the

GMRES algorithm. As a preconditioner we have found that the incomplete LU factorization of A

gives excellent results.

The 2D preconditioned problem is

lÿ1�ky�A�ky�x�ky� �lÿ1�ky�b�ky�; ky � 0; . . . ; kymax
; �14�
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but in this formulation the iterative solver would be extremely time-consuming, because for each ky,

computing lÿ1�ky� has almost the same cost as a complete factorization.

We have therefore considered the simpli®ed formulation

lÿ1��ky�A�ky�x�ky� �lÿ1��ky�b�ky�; ky � 0; . . . ; kymax
; �15�

where lÿ1��ky� is the preconditioning matrix computed for a ®xed �ky. Indeed, as the matrix A�ky� does

not depend so much on ky, the same preconditioner computed for a particular wave number may be

used for all the others. This property allows us to reduce dramatically the number of ¯oating point

operations and makes this technique competitive with respect to the LU one in terms of CPU time.

The global memory storage, on the other hand, reduces from kymax
� 1 matrices to one.

Concerning the stopping criterion, the number of iterations required by the GMRES algorithm

increases with the precision demanded, so that the proper choice of the tolerance is important to

minimize the CPU time.

Figure 3 clearly shows that the main contribution to the global error arises from the truncation error

in both space and time and that a good choice for the tolerance demanded by GMRES is o�10ÿ7� for

Ra � 5Rac and 1076 for Ra � 50Rac.

In the Ra � 5Rac test both solvers have achieved the same steady state pattern after roughly 1000

time steps, corresponding to one diffusion time. The two simulations display the same transient

Figure 3. Global round-off and truncation errors for Ra � 5Rac and 50Rac. All runs have been performed in two dimensions
with kymax

� 24. The errors are evaluated near the end of the simulation
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behaviour and the same steady state pattern (Figures 4 and 5). In both cases we have used the

maximum time step allowed by the semi-implicit scheme.

The absolute temporal truncation error is plotted in Figure 6 at two different times and the

corresponding relative temporal truncation error is plotted in Figure 7. From Figure 6 we see that the

absolute error is of the same order at all the scales, while from Figure 7 it is apparent that the relative

error is much larger at small scales. The temporal error, due to the numerical dispersion introduced by

the semi-implicit operator, is the dominating one. It is interesting to see in Figure 6 that at the

beginning of the simulation, when the in¯uence of the transient is still strong, each mode oscillates at

its own frequency, curve (a), whereas a steady pattern is achieved at the steady state con®guration,

curve (b), after one diffusion time.

In Figure 7 one sees that the pattern of the temporal relative error (a) is not so different from the

spatial error (b), both being determined by the shape of the Chebyshev spectrum.

Figure 8 shows the CPU time performances. For the LU curve we assume that the matrix has

already been factorized, so it grows as N2
z independently of the value of the wave number ky. This is

not true for the GMRES case: increasing values of ky leads to slower convergence. In the same ®gure

we show three curves for the GMRES case. The lower one corresponds to the problem

A�1�x�1� � b�1�, while the upper one is for A�Kymax
�x�kymax

� � b�kymax
�. For a given ky we observe

that the GMRES time grows almost linearly with Nz, so that as the size of the problem increases,

performances more and more favourable to the iterative solver are expected.

The total CPU times have been recorded in Table I and show that the GMRES code, though

memory-saving, is about twice slower than the LU version.

Figure 5. Pressure ¯uctuations of steady state solution of 2D convection at Ra � 5Rac

Figure 4. Kinetic energy of different ky-modes as a function of time for 2D run at Ra � 5Rac. Time is in units of thermal
diffusion time
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At larger Ra the ¯ow becomes more complex and time-dependent (see Figure 9). In 3D

calculations, moderate Rayleigh numbers �Ra � 50Rac� have been used starting from the

con®guration of axisymmetric rolls that is the stationary solution at 5Rac. This con®guration

undergoes transition to a more elaborate and time-dependent pattern. In Figure 10 we show the

pattern near the initial stage, in Figure 11 a sequence of states at different times and in Figure 12 the

time evolution of the velocity components at a selected point. In all phases of the ¯ow ®eld we have

controlled the absolute and relative errors and we have found that they do not differ qualitatively

from those obtained in the 2D case at Ra � 5Rac (Figures 6 and 7). For the 3D case we have used the

approximate preconditioning technique based on the matrix lÿ1�kx � 1; ky � 1�. We have found that

this preconditioner was able to produce very fast and accurate convergence for every kx and ky.

Figure 6. Absolute temporal truncation errors at two different times of integration process: (a) transient phase; (b) near
converged stationary state. We have taken Nz � 40; kymax

� 24 and the run is in two dimensions

Figure 7. Relative errors due to (a) temporal and (b) spatial truncation and (c) relative error of iterative GMRES method at time
near converged stationary state. We have taken Nz � 40; kymax

� 24;Ra � 5Rac and the run is in two dimensions
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6. CONCLUSIONS

We have shown in this paper that the GMRES algorithm with the incomplete LU preconditioner is a

very effective choice. In order to avoid the high cost of the preconditioner, one would have to

compute all the preconditioning matrices once at the beginning of the code and to save them with an

unacceptable memory occupancy. A clever modi®cation of the preconditioners, namely taking them

Table I. CPU times (in seconds) required by LU and GMRES solvers for two runs with resolutions Nz � 40 and
64 on a Cray-2. In both cases kymax

� 24. The second and third columns give the total CPU times for the
simulation. The fourth column gives the CPU time spent outside the linear solvers. The ®fth column is the ratio
between the second and third columns. The sixth column gives the ratio between the time spent in the direct LU

solver and the time spent in the GMRES solver

Total CPU Total CPU Residual TOTAL
Nz LU GMRES CPU CPULU=CPUGM RES CPULU=CPUGM RES

40 17�2 22�0 15�2 0�78 0�29
64 25�50 49�0 20�5 0�52 0�18

Figure 8. Time required on a Cray-2 to solve 4�Nz � 1� � 4�Nz � 1� linear system arising from semi-implicit algorithm. The
curves shown are those for the direct LU solver and for the iterative GMRES solver with the incomplete LU preconditioner
described in Section 4 for a given ky (and kx � 1). The tolerance demanded for the iterative solver is e � 10ÿ8. The horizontal

truncation is kymax
� 24

Figure 9. Snapshot of pressure ¯uctuations for 2D simulation at Ra � 50Rac
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Figure 10. Pattern of convection near initial condition for 3D run at Ra � 50Rac

Figure 11. Iso-surface of constant vertical velocity at statistically stationary stage for 3D simulation at Ra � 50Rac. The
interval between two successive ®gures is 0�4 thermal diffusion times
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as independent of the Fourier wave numbers, overcomes the limitation in memory and does not

appreciably increase the CPU time cost.

In this paper we have also produced a complete error analysis of pseudospectral computations. This

allows us to control the global error produced in a numerical simulation, thus giving more con®dence

in the results. Also, the application of the error analysis gives a proper stopping criterion for the

iterative scheme, avoiding the production of unnecessarily accurate solutions.
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Figure 12. Time evolution of velocity components at one point. Time is in units of large-eddy turnover time. The total time
corresponds to roughly three thermal diffusion times
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